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Abstract

Background: The COVID-19 pandemic has resulted in 275 million infections and 5.4 million deaths as of December
2021. While effective vaccines are being administered globally, there is still a great need for antiviral therapies as
antigenically novel SARS-CoV-2 variants continue to emerge across the globe. Viruses require host factors at every
step in their life cycle, representing a rich pool of candidate targets for antiviral drug design.

Methods: To identify host factors that promote SARS-CoV-2 infection with potential for broad-spectrum activity
across the coronavirus family, we performed genome-scale CRISPR knockout screens in two cell lines (Vero E6 and
HEK293T ectopically expressing ACE2) with SARS-CoV-2 and the common cold-causing human coronavirus OC43.
Gene knockdown, CRISPR knockout, and small molecule testing in Vero, HEK293, and human small airway epithelial
cells were used to verify our findings.

Results: While we identified multiple genes and functional pathways that have been previously reported to promote
human coronavirus replication, we also identified a substantial number of novel genes and pathways. The website
https://sarscrisprscreens.epi.ufl.edu/ was created to allow visualization and comparison of SARS-CoV2 CRISPR screens in
a uniformly analyzed way. Of note, host factors involved in cell cycle regulation were enriched in our screens as were
several key components of the programmed mRNA decay pathway. The role of EDC4 and XRN1 in coronavirus
replication in human small airway epithelial cells was verified. Finally, we identified novel candidate antiviral
compounds targeting a number of factors revealed by our screens.

Conclusions: Overall, our studies substantiate and expand the growing body of literature focused on understanding
key human coronavirus-host cell interactions and exploit that knowledge for rational antiviral drug development.

Background
The COVID-19 pandemic is arguably the most consequen-
tial infectious disease outbreak in modern times. The causa-
tive agent of COVID-19, SARS-CoV-2, spread quickly across
the planet resulting in 245 million infections and nearly 5

million deaths at the time of this writing. Multiple COVID-
19 vaccines recently demonstrated high efficacy, received
FDA approval, and are being administered to people across
the globe [1–4]. While the importance of this scientific
achievement cannot be overstated, there is still a great need
for novel antiviral therapies for use in vulnerable immuno-
compromised individuals, in regions where vaccine access is
limited, and in the event antigenically distinct SARS-CoV-2
variants, such as delta and omicron, continue to arise and
threaten vaccine efficacy [5]. Moreover, considering that
SARS-CoV-2 is the third novel human coronavirus (HCoV)
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to emerge and cause serious disease in the human popula-
tion in the past two decades following SARS-CoV and
MERS-CoV, potent and broad-spectrum antivirals will leave
us better prepared to deal with future pandemics. Broad-
spectrum antivirals could also reduce morbidity associated
with common cold-causing HCoVs including OC43, NL63,
229E, and HKU1.
Antivirals segregate into two basic categories, virus-

targeting and host-targeting, both of which require an un-
derstanding of the molecular mechanisms used by viruses
to replicate in host cells. Coronaviruses replicate via a
well-established series of molecular events [6, 7]. Host fac-
tors are required at every step in this life cycle and repre-
sent candidate druggable targets (i.e., host-targeting
antivirals) with the potential for broad-spectrum activity
against multiple viruses within a given virus family and
even across virus families [8, 9]. Accordingly, we per-
formed CRISPR-based genome-wide knockout screens for
both SARS-CoV-2 and OC43 infections to identify host
factors that promote HCoV replication. Considering the
power of genome-wide screens in the identification of host
factors required for viral replication and the enormous
global impact of the ongoing COVID-19 pandemic, it is
not surprising that other research groups also applied this
approach to SARS-CoV-2. Six genome-wide CRISPR
screens for the identification of host factors promoting
SARS-CoV-2 replication are published [10–15]. Despite
the redundancy in the overall approach, there was experi-
mental variability across screens in the selection of cell
lines and infection conditions. Together with the sheer
magnitude of critical host-virus interactions required for
successful viral infection, individual screens are likely to
capture only a subset of these host factors. Consistent with
this, while specific genes and pathways were identified
across published studies, each study also provided unique
findings which expand our understanding of host-HCoV
interactions.
In this study, we report a global analysis of host-HCoV

interactions gleaned from genome-wide screens per-
formed for two HCoVs and in two different cell lines.
We also performed a comprehensive comparative ana-
lysis of all published genome-wide SARS-CoV-2 screens
to date [11, 12, 14, 15]. Multiple genes and functional
pathways identified in our screens were previously re-
ported to promote SARS-CoV-2 replication, validating
the rigor of our approach and providing further support
for the role of specific host factors. Yet we also identified
a substantial number of novel genes and pathways not
previously reported to promote HCoV replication. We
validated the importance of a subset of genes identified
in these screens in HCoV replication in multiple cell
types, including a respiratory cell line. Notably, several
of the novel host factors identified in our study provide
unique insight into SARS-CoV-2 replication processes

that could be targeted with antiviral drugs. Host factors
involved in cell cycle regulation were enriched in our
screens and we show that compounds (abemaciclib, AZ1
protease inhibitor, harmine, nintedanib, and UC2288)
targeting these host factors inhibit in vitro HCoV repli-
cation. We also identified multiple host factors involved
in endocytosis and TBK1 that plays a key role in innate
immune responses. Inhibitors of these processes/factors
(promethazine and amlexanox, respectively) also dis-
played antiviral activity. Together, our study has pro-
vided significant insight into host-HCoV interactions
and identified novel candidate antiviral compounds.

Methods
Study design
The objectives of this study were to identify host factors
that promote HCoV replication and to determine
whether these host factors can be targeted with com-
mercially available drugs to block viral infection in vitro
(Additional file 1: Fig. S1). To achieve this goal, we per-
formed genome-wide CRISPR knockout screens in Vero
E6 cells using a newly generated and validated Vervet
sgRNA library (Additional file 1: Fig. S2), as described in
the “Generation of the Vervet-specific genome-wide
sgRNA library” section of Additional file 1: Supplemen-
tary Methods (Fig. 1A) and in HEK293T-hACE2 cells
using the commercially available human Brunello sgRNA
library, as described in the “Genome-wide CRISPR
sgRNA screens” section of the “Methods” section (Fig.
1B). In brief, cells transduced with sgRNA libraries were
infected with HCoVs, SARS-CoV-2 and OC43, using
various MOIs. Cells surviving infection were expanded
and reinfected, and the sgRNAs enriched in resistant
clones were determined. Genes targeted by enriched
sgRNAs were compared between replicates, infection
conditions, HCoVs, cell lines, and previously published
screens [11, 12, 14, 15] to identify common and unique
host factors as well as putative pan-HCoV host factors.
Genes of interest were selected for validation and tar-
geted for knockdown using shRNAs followed by infec-
tion with HCoVs. Commercially available inhibitors to
other important genes identified in our study were eval-
uated for their capacity to prevent virus-induced toxicity
and viral replication in vitro. EC50 and IC50 values for ef-
ficacious compounds were determined.

Virus stock generation, viral titer determination, and cell
lines
Vero E6 cells were obtained from ATCC. HEK293T cells
expressing hACE2 receptor were obtained from Gene-
Copoeia. hTERT immortalized human small airway epi-
thelial cells (SAEC) were obtained from ATCC. The
human ACE2 gene was transduced into SAEC to gener-
ate stably expressing SAEC-hACE2 cells. SARS-CoV-2
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strain UF-1 (GenBank accession number MT295464.1)
was originally isolated from a COVID-19 patient at the
University of Florida Health Shands Hospital via nasal
swab [16] and manipulated in a Biosafety Level 3 (BSL3)
laboratory at the Emerging Pathogens Institute with ap-
propriate approvals obtained under the University of
Florida Institutional Biosafety Committee protocol#
BIO5594. The HCoV OC43 strain was a kind gift from
Dr. John Lednicky (University of Florida). SARS-CoV-2
and OC43 were propagated in Vero E6 cells (grown in
Dulbecco’s modified Eagle medium (DMEM; Gibco)
supplemented with 10% heat-inactivated fetal bovine
serum (FBS; Atlanta Biologicals) and Pen-Strep (100 U/
ml penicillin, 100 μg/ml streptomycin; Gibco) at 37 °C
and 5% CO2. Virus stocks were prepared by infecting
Vero E6 cells at MOI 0.01, centrifuging culture superna-
tants collected at 3 dpi for 5 min at 1000 × g, and filter-
ing through a 0.44-μm PVDF filter (Millipore) followed
by a 0.22-μm PVDF filter (Restek). The virus stocks were
aliquoted and stored at −80 °C. Virus stocks or superna-
tants from infected SAEC-hACE2 cells were titered
using a standard TCID50 assay. In brief, Vero E6 cells
were seeded at 2 × 104 cells per well in a 96-well plate
(Corning) and allowed to attach overnight. Virus stocks
or supernatants from infected cells were serially diluted
onto cells, with a total of 8 replicates per dilution.
Monolayers were visualized in the BSL3 using an EVOS
XL Core microscope (Thermo Fisher Scientific) and
scored positive or negative for cytopathic effect (CPE) at
7 dpi.

Viral genome copy number enumeration
For SARS-CoV-2, supernatants and cells were harvested
into AVL buffer from the QIAamp Viral RNA Kit (Qia-
gen) and RNA was purified according to the

manufacturer’s recommendations. The samples under-
went reverse transcription and cDNA synthesis using the
iTaq Universal SYBR Green One-Step Kit (Bio-Rad) and
primers targeting the nucleocapsid (N) gene of SARS-
CoV-2 (NproteinF- GCCTCTTCTCGTTCCTCATCAC,
NproteinR-AGCAGCATCACCGCCATTG). qPCR was
carried out on a Bio-Rad CFX96, and viral genome copy
numbers were extrapolated using CT values from a stand-
ard curve generated using a control plasmid containing
the N protein gene (Integrated DNA Technologies). For
OC43, RNA from infected cells was purified using the
RNeasy Mini Kit (Qiagen) according to the manufacturer’s
recommendations and amplified using the Applied Biosys-
tems AgPath-ID One-Step RT-PCR Kit (Thermo Fisher
Scientific) and primers and probe targeting the N gene of
OC43 [17]. GAPDH levels were determined for each sam-
ple for normalization purposes using previously described
primers [18]. All samples were run in triplicate for each
primer pair and normalized viral genome copy numbers
were calculated using the comparative cycle threshold
method.

Genome-wide CRISPR sgRNA screens
The human CRISPR Brunello library (Addgene 73178)
[19] was amplified following a previously published
protocol [20]. We constructed a Vervet domain-targeted
sgRNA library since one was not commercially available.
Detailed methods are reported in Additional file 1: Sup-
plementary methods. For both libraries, lentiviruses were
produced in HEK293T cells by co-transfection of library
plasmids together with the packaging plasmid psPAX2
(Addgene 12260) and envelope plasmid pMD2.G
(Addgene 12259). CRISPR screens were carried out in
two cell lines (outlined in Fig. 1): AGM Vero E6 cells
were transduced with the newly generated Vervet

Fig. 1 Experimental design for genome-scale CRISPR screens performed in this study. Details of these screens are provided in the methods. A Vero E6
cells transduced with the newly generated Vervet sgRNA library were infected with SARS-CoV-2 or OC43 at MOI 0.01; resistant cells were expanded
and reinfected at MOI 0.1. B Two screens were performed in HEK293T-hACE2 cells transduced with the Brunello sgRNA library. In the first screen, cells
were infected with SARS-CoV-2 or OC43 at MOI 0.01 and resistant cells were reinfected with either MOI 0.01 or MOI 0.1 of the corresponding virus. In
the second screen, cells were infected with SARS-CoV-2 at MOI 0.3 and reinfected at MOI 0.03. In all cases, genomic DNA was extracted from multiple
replicates of control cells, the initial infections, and reinfections for the purpose of sgRNA sequencing
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sgRNA library (sgRNAs are listed in Additional file 2)
and human HEK293T-hACE2 cells (Genecopoeia) were
transduced with the Brunello sgRNA library. For each
screen, 1.2 × 108 cells were transduced with lentivirus-
packaged sgRNA library at MOI 0.3 in the presence of
8 μg/ml polybrene (Sigma) to achieve ~ 500-fold over-
representation of each sgRNA. After 48 h, 0.6 μg/ml
puromycin (Gibco) was added to eliminate non-
transduced cells and cultures were expanded in
Matrigel-coated (Corning) T300 flasks. Control repli-
cates were collected at this time to determine input li-
brary composition and additional replicates were
infected with SARS-CoV-2 or OC43 at the indicated
MOIs. Cells surviving initial infections were collected
when they had expanded to confluency. A portion of
each replicate was stored in DNA/RNA Shield (Zymo
Research) at −80 °C for genomic DNA extraction, and
the remaining cells were reseeded and reinfected at the
indicated MOIs. Cells surviving reinfections were also
harvested at confluency for genomic DNA extraction.
Genomic DNA was extracted from each sample (de-

tailed extraction methods are described in Additional file
1: Supplementary methods and Table S1). The sgRNA
regions were then amplified and indexed for Illumina se-
quencing using a one-step PCR method and primers
specific to the LentiCRISPRv2-based Vervet and Bru-
nello libraries. Primers and indices used for the gener-
ation of amplicon libraries are listed in Additional file 1:
Table S2. Brunello and Vervet DNA samples were amp-
lified in ten 100-μl reactions using the NEBNext High-
Fidelity 2X Master Mix Kit (New England Biolabs),
0.5 μM of forward and reverse primers, and 10 μg of
DNA template per reaction with the following program:
initial denaturation at 98 °C for 3 min, 24 cycles of de-
naturation at 98 °C for 10 s, annealing 60 °C for 15 s and
extension 72 °C for 25 s, and final extension at 72 °C for
2 min. Then, 256-bp amplicons were quantified on a 2%
agarose gel stained with SYBR Safe (Invitrogen), using
the Gel Doc quantification software (Bio-Rad). Ampli-
cons were first pooled in an equimolar fashion and then
the pools were gel-extracted using the PureLink Quick
Gel Extraction Kit (Thermo Fisher Scientific). The se-
quencing was carried out at the Interdisciplinary Center
for Biotechnology Research (ICBR; University of Florida)
using a NovaSeq 6000 sequencer (Illumina). The Bru-
nello amplicons were sequenced using the S4 2X150 cy-
cles Kit (Illumina) while the Vervet-AGM amplicons
were sequenced with the SP 1X100 cycles Kit (Illumina).

Computational analysis
A custom script was developed for implementation of
the data analysis pipeline and is available at GitHub
https://github.com/moritzschaefer/covid19-screens [21].
Briefly, the FASTX-Toolkit [22] was used to demultiplex

raw FASTQ data which were further processed to gener-
ate reads containing only the unique 20-bp sgRNA se-
quences. The sgRNA sequences from the library were
assembled into a Burrows-Wheeler index using the Bow-
tie build-index function and reads were aligned to the
index. The efficiency of alignment was checked and the
number of uniquely aligned reads for each library se-
quence was calculated to create a table of raw counts.
Ranking of genes corresponding to perturbations that
are enriched in infected cultures was performed using a
robust ranking aggregation (a-RRA) algorithm imple-
mented in the Model-based Analysis of Genome-wide
CRISPR/Cas9 Knockout (MAGeCK) tool through the
test module [23]. Tables with raw counts corresponding
to each sgRNA in reference (initial pool) and selected
(virus-infected) samples were used as an input for the
MAGeCK test. Gene-level ranking was based on FDRs
and candidates with FDRs < 0.25 were considered as sig-
nificant hits. Ranking of genes corresponding to posi-
tively selected and negatively selected perturbations was
performed using a robust ranking aggregation (a-RRA)
algorithm implemented in MAGeCK through the test
module [23]. Tables with raw counts corresponding to
each sgRNA in reference (initial pool) and selected (ex-
posed to virus) samples were used as an input for the
MAGeCK test. Gene-level ranking was based on false
discovery rate (FDR) and candidates with FDR < 0.25
were considered as significant hits. Additional details
can be found in Additional file 1: Supplementary
methods. We submitted FastQ files for all CRISPR se-
quencing to Gene expression omnibus (GSE177545-
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE177545) [24] and count files for all samples are
available in Additional file 3.

Validation of host factors in promoting HCoV infections
To validate selected host factors for their capacity to
promote HCoV infection in vitro, we transduced
HEK293T-hACE2 cells with lentivirus-packaged shRNAs
targeting CTSL, CCZ1, or EDC4 (TRC Human shRNA
Library collection [25]) or the empty vector pLKO.1. In
addition, we generated hACE-expressing SAEC cells by
transduction with pLENTI_hACE2_HygR plasmid-
packaged lentiviruses (Addgene 155296) and selection of
transduced cells with hygromycin (300 μg/ml). Next,
SAEC-hACE2 cells were transduced with lentivirus-
packaged sgRNAs targeting EDC4 and XRN1, designed
with PAVOOC [26] and synthesized by the Molecular
Cloning Facility (Department of Biological Science, Flor-
ida State University). Transduced cells were expanded
under puromycin selection (0.8 μg/ml) for at least 7 days
to generate stable knockdown or knockout cell lines. For
knockout SAEC-hACE2 cells, monoclonal colonies were
isolated from pools of cells and tested individually. To
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confirm gene knockdown and knockout, cell lysates pre-
pared from knockdown/knockout and control cells were
tested by western blotting with antibodies directed to
CTSL (Invitrogen, BMS1032), CCZ1 (Santa Cruz
Biotechnology, sc-514290), EDC4 (Cell Signaling Tech-
nology, 2548S), XRN1 (Cell Signaling Technology,
70205S), and actin as a loading control (Sigma-Aldrich,
MAB1501R). Once knockdown or knockout was con-
firmed, cells were infected with SARS-CoV-2 or OC43
at MOI 0.01 and RNA was extracted at 2 dpi for viral
genome copy number enumeration, or cell supernatants
were tested at various timepoints for quantification of
viral infectious particles by TCID50 as described above.
Cell viability of SAEC-hACE2 knockout cells was com-
pared to control cells using the CellTiterGlo 2.0 Cell
Viability Assay (Promega) according to the manufac-
turer’s instructions. Knockout cells displayed no gross
reduction in viability.

Identification and testing inhibitors of host factors from
CRISPR screens
Online databases [27–31] and published literature
(https://pubmed.ncbi.nlm.nih.gov/) were used to find
small molecule inhibitors targeting a subset of top-
scoring genes in the CRISPR screens. Amlexanox
(AMX) was purchased from InvivoGen. Abemaciclib
(ABE), AZ1, olaparib (OPB), and nintedanib (NIN) were
purchased from Selleckchem. Harmine (HAR), INDY,
chlorpromazine (CPZ), promethazine (PMZ), UC2288
(UC2), and CID 1067700 (CID) were purchased from
Millipore Sigma. Drugs were diluted according to the
manufacturers’ recommendations and single-use aliquots
were frozen at −80 °C until the time of assay. Drugs were
diluted down to 2X concentrations and mixed with 2X
concentrations of virus to generate 1X concentrations,
then added to the monolayers. Cells were infected at a
MOI of 0.2 as determined by preliminary experiments to
generate an ideal dynamic range of the colorimetric
CytoTox 96® Non-Radioactive Cytotoxicity Assay (Pro-
mega). Infections progressed for 72 h at which time
supernatant from treatments and controls were proc-
essed for LDH release according to the manufacturer’s
recommendations. Absorbance at 450 nm was read using
an accuSkan FC microplate reader (Fisher Scientific)
with SkanIt software (Fisher Scientific). Absorbance
values were background subtracted and transformed to
percent of virus-infected controls. These percentages
were compared to the values obtained from virus-
infected cell cytotoxicity values by one-way ANOVA
using GraphPad Prism version 9. Assays were carried
out in biological duplicate and in three independent ex-
periments. The concentration of drug alone that resulted
in 50% of maximum toxicity (cytotoxic concentration
50; CC50) and the concentration of drug that inhibited

50% of the vehicle-treated SARS-CoV-2-induced cyto-
toxicity (effective concentration 50; EC50) were deter-
mined by serially diluting small molecule inhibitors
during SARS-CoV-2 infection of Vero E6 cells. EC50 and
CC50 values were calculated by transforming inhibitor
concentrations to log then using the non-linear fit with
variable slope function (GraphPad Prism version 9) to
determine best fit variables using the percent of max-
imum SARS-CoV-2-induced cytotoxicity measurements
at each drug concentration performed in technical dupli-
cate. Candidate inhibitors were assayed for their ability
to prevent OC43 and SARS-CoV-2 replication in SAEC-
hACE2 cells by TCID50. SAEC-hACE2 cells were in-
fected in triplicate at an MOI of 0.01 in the presence of
the indicated inhibitors for 3 days. TCID50 were deter-
mined by diluting the supernatant of each replicate
across octuplet columns of Vero E6 cells. Five days later,
TCID50 was read. The data are from two independent
repetitions. Phospholipidosis was determined in SAEC-
hACE2 cells with the HCS LipidTOX Red Neutral Lipid
Stain according to the manufacturer’s instructions using
a Biotek Cytation 3 plate imager. Cytotoxicity in SAEC-
hACE2 cells was determined as above for Vero E6 cells.

Website creation and data repository
To facilitate the access, reusability, and integration of
this data, we have created and hosted a website (sar-
scrisprscreens.epi.ufl.edu) which contains data for previ-
ously published HCoV CRISPR screens and our
integrated MAGeCK analysis using the VISPR pipeline
of the SARS-CoV-2 screens [11, 12, 14, 15]. VISPR is a
Web-based interactive tool to visualize CRISPR screen-
ing experiments [32]. Our goal is to provide a commu-
nity resource for facile integrated analysis of current and
future CRISPR screens. Further details on how to submit
new data are provided on the website.

Statistical analysis
For the genome-scale CRISPR analysis, the embedded
statistical tools in the MAGeCK/VISPR pipelines were
used [23, 33]. Further details are provided in Additional
file 1: Supplementary Methods. All other statistical ana-
lyses were carried out using GraphPad Prism 9.0. To
compare the mean normalized viral genome copy num-
ber values in targeted shRNA knockdown experiments
(Fig. 6), P values were determined using one-way
ANOVA test (*P < 0.05, **P < 0.01, ***P < 0.001), with
error bars representing standard errors of mean (n = 3
experiments). For testing inhibitory activity of small
molecules on SARS-CoV-2 infection of Vero E6 cells
(Fig. 7), a one-way ANOVA test was used for compari-
son of toxicity values for inhibitor-treated infected cells
and infected-only control cells (no treatment), with error
bars denoting standard deviation for all panels (n = 3
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experiments). Non-linear regression of data points was
used to determine the EC50 and IC50 values for indicated
compounds.

Results
Genome-wide CRISPR screens in Vero E6 cells identify
host factors required for HCoV infection
In order to identify host factors that promote HCoV infec-
tion, we performed genome-wide loss of function CRISPR
screens for pathogenic SARS-CoV-2 and common cold-
causing OC43 in two susceptible cell lines. Due to the
highly cytopathic nature of HCoV infection in the Vero
E6 cells derived from African Green Monkey (AGM;
Chlorocebus sabaeus), we carried out genome-wide
screens using a custom Vervet CRISPR knockout library
(see supplemental methods) (Fig. 1A). Vero E6 cells were
transduced with the Vervet CRISPR library and infected
with SARS-CoV-2 or OC43 at a multiplicity of infection
(MOI) 0.01. We observed ~ 60% visible cytopathic effect
(CPE) for SARS-CoV-2 and ~ 85% CPE for OC43.

Resistant clones were expanded, reinfected with the corre-
sponding virus at MOI 0.1, and re-expanded. Genomic
DNA was extracted from surviving cells, sgRNAs ampli-
fied, and sequenced. We carried out MAGeCK analysis to
identify genes targeted by significantly enriched sgRNAs
which are labeled in the volcano plots in Fig. 2A, B. Full
data sets are available in Additional files 4 and 5. To facili-
tate the access and reusability of data sets generated from
genome-scale CRISPR screens in HCoV-infected cells, we
have also hosted a website (sarscrisprscreens.epi.ufl.edu)
with the complete set of MAGeCK results for each of the
screens described in this study and data from previously
published screens reanalyzed herein [8, 12–15]. The web-
site was designed to facilitate integration of upcoming
screens and we hope for contributions to drive this as a
community project.
We identified multiple candidate host factors previ-

ously demonstrated to play a functional role in SARS-
CoV-2 and OC43 infections. For example, ACE2 was
identified in the SARS-CoV-2 screen [34]. Furthermore,

Fig. 2 Identification of host factors that promote HCoV infection of Vero E6 cells. Vero E6 cells transduced with a C. sabaeus-specific sgRNA library
were infected with SARS-CoV-2 or OC43 at MOI 0.01, resistant cells reinfected at MOI 0.01, and sgRNAs in resistant clones sequenced. MAGeCK
analysis of multiple replicates compared to uninfected control library replicates yielded log2fold changes (log2FC) that were plotted on the x-axis.
Negative log10-transformed false discovery rates (FDR) were plotted on the y-axis. Data are presented for SARS-CoV-2 (A) and OC43 (B) Vero E6
infections. The heat maps display the log2FC for the 20 top-scoring genes comparing results for SARS-CoV-2 and OC43 infections. Genes targeted
by significantly enriched sgRNAs (FDR < 0.25) were segregated into functional categories using PANTHER for SARS-CoV-2 (C) and OC43
(D) infections
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TMEM41B was a top-scoring gene in the OC43 screen,
supporting recent work by Schneider et al. demonstrat-
ing that TMEM41B is a pan-HCoV host factor [12]. We
also identified interferon (IFN)-induced transmembrane
(IFITM) proteins that have been reported to regulate
HCoV infection [35–37]. Genes targeted by significantly
enriched sgRNAs were next segregated into functional
categories listed in tables in Fig. 2C, D. Of note, CDK4, a
master regulator of the cell cycle, was identified as a key
host factor for both viruses. Disruption of additional
genes encoding regulators of cell cycle progression, in-
cluding CDK1NA, DYRK1A, HRK, and P53, similarly in-
creased cellular resistance to SARS-CoV-2 infection.
During the completion of our studies, Wei et al. re-

ported similar SARS-CoV-2 screens in Vero E6 cells
performed with an independent sgRNA library based
on an earlier C. sabaeus genome assembly [13]. In
order to compare our data sets to those of Wei et al.,
we downloaded raw data from their study and analyzed
them using MAGeCK-VISPR [13, 33] (Additional file 1:
Supplementary methods and Additional file 3). There
were 6 targeted genes identified in common between
studies: ACE2, DPF2, DYRK1A, RAD54L2, SMARCA4,
and TP53.

Genome-wide CRISPR screens in HEK293T-hACE2 cells
identify host factors required for HCoV infection
We similarly performed CRISPR screens in human
HEK293T cells ectopically expressing the human ACE2
receptor (HEK293T-hACE2) transduced with the Bru-
nello sgRNA library [19] (Fig. 1B). Transduced cells were
infected with SARS-CoV-2 or OC43 at MOI 0.01. SARS-
CoV-2-infected cultures developed ~ 40% CPE and
OC43-infected cultures developed > 85% CPE. Resistant
cell populations propagated to confluence were rein-
fected with the corresponding virus at either MOI 0.01
or MOI 0.1 and re-expanded. Genomic DNA was ex-
tracted and sgRNAs from both the initial and secondary
infections were sequenced.
The genes targeted by the most highly enriched

sgRNAs in each of the SARS-CoV-2 infections are indi-
cated in Fig. 3A–C. The full data set is available in Add-
itional file 6. EDC4, a gene encoding a scaffold protein
that functions in programmed mRNA decay, was the
overall top-scoring gene. Interestingly, XRN1 encodes
another key player in this pathway and was also top-
scoring. We further categorized the genes encoding can-
didate host factors (FDR < 0.1) into functional categories
depicted in heat maps in Fig. 3D. Consistent with other
published screens, we identified multiple components of
the endocytic pathway including CCZ1, DNM2, and
WASL. Other functional categories in which multiple
genes were identified include cell adhesion, cell cycle, in-
tegrator complex, lysosome, mTOR regulation, and

ubiquitination/proteolysis. We carried out an independ-
ent SARS-CoV-2 screen using the higher MOI of 0.3 for
initial infection which resulted in ~ 80% CPE, and MOI
0.03 for secondary infection. Genes targeted by the most
significantly enriched sgRNAs in this study are presented
in Fig. 3E, F and are segregated into functional categor-
ies depicted in heat maps in Fig. 3G. The full data set is
available in Additional file 7. ACE2 was a top-scoring
gene in this screen. Functional categories with multiple
targeted genes include amphisome, autophagy, endo-
some, exocytosis, lysosome, peroxisome, transcription/
transcriptional regulation, and ion transporters. C18orf8,
CCZ1, CDH2, and TMEM251 were identified in both
the low- and high-MOI SARS-CoV-2 screens.
The genes targeted by the most highly enriched

sgRNAs in the OC43 HEK293T-hACE2 screens are indi-
cated in Fig. 4A–C and segregated into functional cat-
egories in Fig. 4D. The full data set is available in
Additional file 8. As expected, based on prior work,
genes encoding IFITM proteins were identified as
proviral factors for OC43 [35]. TMEM41B was a top-
scoring gene along with the functionally related
VMP1, as were CCZ1, CCZ1B, SLC35B2, and WDR81
which have all been reported in other recent OC43
genome-wide screens [11, 12]. When comparing the
SARS-CoV-2 and OC43 HEK293T-hACE2 datasets,
there were 6 genes in common targeted by signifi-
cantly enriched sgRNAs (C18orf8, CCZ1, CCZ1B,
RAB7A, WDR81, and WDR91). Notably, all of the
corresponding gene products function in vesicle-
mediated transport.
During the completion of our studies, similar SARS-

CoV-2 screens in human Huh-7.5 [11, 12, 15] and A549
[10, 14] cells were published. In order to compare our data
sets to those of other groups, we downloaded raw data
from four published studies [11, 12, 14, 15], analyzed them
using a common analysis framework (MAGeCK) and
stringency (FDR < 0.25), and compared the results to our
data sets (Additional files 9 and 10). Using this stringency,
no genes were identified in all five studies, 1 gene was
identified in four studies (ACE2), 6 genes were identified
in three studies (VPS35, CTSL, DNM2, CCZIB,
TMEM106B, and VAC14), and 25 genes were identified in
two studies (ALG5, ARVCF, ATP6V1A, ATP6V1G1,
B3GAT3, CNOT4, EPT1, EXOC2, EXT1, EXTL3, GDI2,
LUC7L2, MBTPS2, PIK3C3, RAB7A, RNH1, SCAF4,
SCAP, SLC30A1, SLC33A1, SNX27, TMEM41B,
TMEM251, WDR81, and WDR91) (Fig. 5A, B). It should
be noted that these genes were top-scoring across studies
performed in different human cell lines, suggesting they
are broadly important in SARS-CoV-2 replication. Shared
pathways include vesicle-mediated transport (CCZ1B,
DNM2, EXOC2, GDI2, PIK3C3, RAB7A, SNX27, VAC14,
VPS35, WDR81, WDR91), vacuolar ATPases important in
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organelle acidification (ATP6V1A, ATP6V1E,
ATP6V1G1), and heparan sulfate biosynthesis genes
(EXT1, EXTL3, B3GAT3). We identified 53 genes tar-
geted by enriched sgRNAs in our study that were not
identified in published studies (Fig. 5C), including
EDC4 and XRN1.

Validation of a subset of gene candidates that promote
HCoV replication
To confirm that unique genes identified in our screens
promote HCoV replication, HEK293T-hACE2 cells were
engineered to stably express gene-specific shRNAs tar-
geting CCZ1 or EDC4. CTSL knockdown was tested as a

(See figure on previous page.)
Fig. 3 Identification of host factors that promote SARS-CoV-2 infection of HEK293T-hACE2 cells. HEK293T-hACE2 cells transduced with the
Brunello sgRNA library were infected with SARS-CoV-2 at MOI 0.01 and sgRNAs in resistant clones sequenced. Resistant clones were reinfected
with SARS-CoV-2 at MOI 0.01 or MOI 0.1 and sgRNAs in resistant clones sequenced. For all three infections, MAGeCK analysis of multiple replicates
compared to uninfected control library replicates yielded log2fold changes (log2FC) that were plotted on the x-axis. Negative log10-transformed
FDR were plotted on the y-axis. Data are presented for the initial infection (A), MOI 0.01 reinfection (B), and MOI 0.1 reinfection (C). D The heat
map displays the log2FC for top-scoring genes (FDR < 0.1) across the three infections. The entire experiment was repeated at MOI 0.3, with
sgRNAs sequenced from resistant clones in the initial infection (E) and reinfection (F). G The heat map displays the log2FC for top-scoring genes
(FDR < 0.25) across the two infections
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Fig. 4 Identification of host factors that promote OC43 infection of HEK293T-hACE2 cells. HEK293T-hACE2 cells transduced with the Brunello
sgRNA library were infected with OC43 at MOI 0.01 and sgRNAs in resistant clones sequenced. Resistant clones were reinfected with OC43 at MOI
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positive control for SARS-CoV-2 [38]. Efficiency of gene
knockdown assessed by western blotting was robust for
all three genes (Fig. 6A and Additional file 1: Fig. S3A).
Knockdown cells were then infected with SARS-CoV-2
or OC43 and viral genome copy number determined at
2 days post-infection (dpi). All three genes were required
for optimal SARS-CoV-2 infection while CCZ1 and
EDC4, but not CTSL, promoted OC43 infection (Fig.
6B). Because EDC4 was unique to our screens, we next
tested whether it plays a role in promoting HCoV repli-
cation in respiratory cells. The small airway epithelial
cell (SAEC) line was engineered to express human ACE2
(hACE2) and then EDC4 was targeted for knockout
using a CRISPR/Cas9-based approach. As mentioned
above, Xrn1 functions in the same mRNA decay path-
way as Edc4 and was also identified in our screens so we
engineered Xrn1−/− SAEC-hACE2 expressing cells in
parallel. After verifying gene knockout (Fig. 6C and

Additional file 1: Fig. S3B), cells were infected with ei-
ther SARS-CoV-2 or OC43 and virus titers measured at
various time points by TCID50 assay. EDC4 and XRN1
were necessary for efficient replication of both viruses
(Fig. 6D).

CRISPR screening reveals novel antiviral drugs displaying
in vitro efficacy
We next determined whether gene products and path-
ways identified in our screens could be targeted with
commercially available inhibitors to block HCoV infec-
tion. Numerous genes involved in cell cycle regulation
were identified in our screens. The following inhibitors
targeting this class of host factors were tested: abemaci-
clib (ABE; Cdk4, Cdk6 inhibitor), UC2288 (UC2;
CDKN1A/p21 inhibitor), harmine (HAR) and INDY
(Dyrk1A/B inhibitors), AZ1 (Usp25/28 inhibitor), ola-
parib (OPB; ARID1A inhibitors were not available so

Fig. 5 Comparison of multiple CRISPR screens identifying host factors promoting SARS-CoV-2 infection of human cell lines. A Data from four recently
published CRISPR screens for SARS-CoV-2 in various human cell lines were reanalyzed and compared to our data to identify common top-scoring
genes (FDR < 0.25). Using this criterion, there were 74 genes identified in our study, 53 in Daniloski et al., 707 in Schneider et al., 13 in Wang et al., and
1 in Baggen et al. No common genes were identified in all studies, 1 gene was identified in four studies, 6 genes were identified in three studies, and
25 genes were identified in two studies. Fifty-three genes were uniquely identified in our study as significant. B The heat map displays the log2FC for
the 32 genes found in common across two or more of the published studies with FDR < 0.25. C A heat map displaying the log2FC for the 53 genes
uniquely identified as significant in our studies compared to their observed log2FC across the other published studies
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inhibition of PARP-mediated DNA repair was investi-
gated to see if DNA damage repair was involved in
SARS-CoV-2 replication), and nintedanib (NIN; FGFR1/
2/3, VEGFR1/2/3, and PEGFRα/β inhibitor). Host factors
involved in endocytosis have been widely reported to
regulate HCoV replication and were identified in our
and others’ CRISPR screens [39] so we also tested sev-
eral drugs targeting this process including CID1067700
(CID; Rab7a inhibitor), chlorpromazine (CPZ) and

promethazine (PMZ) both suppress clathrin function in
cells through signaling receptor inhibition. Finally, we
tested amlexanox (AMX) which inhibits TANK binding
kinase 1 (TBK1) and its adaptor protein TBK-binding
protein 1 (TBKBP1) which has been reported to vari-
ously regulate Rab7a activity [40] or induction of IFN re-
sponse genes [41]. The heat map in Fig. 7A shows the
fold enrichment of sgRNAs targeting the genes of inter-
est across the screens performed in this study.

Fig. 6 Confirmation of host factor involvement by targeted shRNA knockdown and CRISPR knockout. Lentivirus-packaged shRNA clones directed to
CTSL, CCZ1, and EDC4 were transduced into HEK293T-hACE2 cells and selected with puromycin. Lentivirus-packaged sgRNA directed to EDC4 and
XRN1 were transduced into SAEC-hACE2 cells and selected with puromycin. A Gene knockdown was assessed using western blotting with antibodies
directed to CTSL, CCZ1, and EDC4 in cells transduced with a gene-specific shRNA or empty vector control (EV). Actin expression served as a loading
control. B Triplicate wells of knockdown cells were infected with SARS-CoV-2 or OC43 at MOI 0.01. At 2 dpi, viral genome copy numbers were
determined by RT-qPCR and normalized to GAPDH levels as a housekeeping control. The data are reported as the relative normalized viral genome
copy number in shRNA-expressing cells compared to the EV control (n = 3 experiments). Error bars denote standard errors of mean and P values were
determined using one-way ANOVA (*P < 0.05, **P < 0.01, ***P < 0.001). C EDC4 and XRN1 knockout in SAEC-hACE2 was assessed using western
blotting with antibodies directed to EDC4 and XRN1 in cells transduced with a gene-specific sgRNA or in wild-type cells (WT). Actin expression served
as a loading control. D Triplicate wells of SAEChACE2 WT, EDC4ko, and XRN1ko cells were infected with SARS-CoV-2 or OC43 and MOI 0.01. At 0hpi,
1dpi, 2dpi, and 3dpi, cell supernatants were harvested and infectious viral particles were measured by TCID50 (n = 2 experiments). Error bars denote
standard errors of mean and P values were determined using one-way ANOVA (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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In an initial experiment of the entire panel of small
molecules, inhibitors were added to culture supernatants
at the initiation of SARS-CoV-2 infection and evaluated
for their capacity to inhibit virus-induced CPE at 3 dpi
in Vero E6 cells. The concentrations of inhibitors used,
based on available toxicity data, were generally nontoxic
in Vero E6 cells (Fig. 7B, white bars). ABE, AMX, HAR,
NIN, OPB, PMZ, and UC2 significantly inhibited virus-
induced cytotoxicity while AZ1, CPZ, INDY, and CID

did not (Fig. 7B, gray bars). Our CID results are consist-
ent with prior work which showed reduced CoV egress,
but no effect on cell viability or viral replication, in re-
sponse to CID treatment [7]. Although INDY and HAR
both target Dyrk1A, only HAR displayed activity in this
assay, potentially due to the lower enzymatic EC50 of
HAR for Dyrk1A (0.24 μM for INDY vs. 0.08 μM for
HAR). As a complementary approach to measure anti-
viral activity of these compounds, we quantified viral
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genome copies by RT-qPCR in cells treated with each
compound at 2 dpi. ABE, AMX, HAR, PMZ, and UC2
significantly decreased viral genome copy number (Fig.
7C), consistent with their ability to protect from virus-
induced cytotoxicity. On the other hand, NIN and OPB
had no effect on viral genome copy number despite their
moderate inhibition of SARS-CoV-2-induced cytotox-
icity. Conversely, AZ1 completely inhibited viral genome
replication in spite of having no significant effect on
cytotoxicity.
For compounds displaying activity in one or both of

these assays, we next determined their EC50 and CC50

against SARS-CoV-2 infection by cytotoxicity measure-
ments in the presence or absence of virus across a series
of inhibitor dilutions (Fig. 7D–J). Several of the inhibi-
tors had EC50 values below 20 μM (10.86 μM for ABE,
14.1 μM for NIN, and 2.16 μM for UC2), with the p21
inhibitor UC2 being the most potent. AMX is typically

used as a topical treatment and had a high EC50 at
342.96 μM. AZ1 (37.49 μM), HAR (61.44 μM), and PMZ
(88.41 μM) showed intermediate EC50 levels. The select-
ivity indices (SI; ratios of CC50 to EC50) of the investi-
gated compounds from highest to lowest are AMX >
53.23, ABE > 5.68, UC2 > 7.40 with the SI of AZ1, HAR,
NIN, and PMZ falling below 2. For comparison, the SI
of clinically relevant antiviral drugs are as follows:
remdesivir is > 129.87, nafamostat > 4.44, and ribavirin
> 3.65 [42]. Generally, determining EC50 with cytotox-
icity measurements results in overestimation of EC50,
leading to a conservative estimate of SI.
A subset of inhibitors displaying efficacy in Vero E6

cells was further assessed for their capacity to inhibit
SARS-CoV-2 and OC43 replication in SAEC-hACE2 or
SAEC, respectively, using TCID50 assay as a readout of
infectious virus titers. ABE, AMX, AZ1, HAR, NIN, and
PMZ inhibited OC43 replication (Fig. 8B) and all
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Fig. 8 Inhibitor, phospholipidosis, and cytotoxicity measurements of anti-SARS-CoV-2 host factors tested in human SAEC. A TCID50 of SARS-CoV-2 in
SAEC-hACE2 cells compared to DMSO control. B TCID50 of OC43 in SAEC cells compared to DMSO control. C–H Phospholipidosis was measured in
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compounds except for AZ1 inhibited SARS-CoV-2 repli-
cation (Fig. 8A). Phospholipidosis of cell membranes by
drug treatment has been implicated as a confounding
issue during in vitro viral inhibition screens [43]. While
others have disputed this claim [44], we decided to test
our compounds for phospholipidosis induction. In Fig.
8C–H, phospholipidosis was measured in SAEC-hACE2
cells treated with each inhibitor. Compared to the posi-
tive phospholipidosis control amiodarone (AMD), induc-
tion of phospholipidosis by PMZ was strongest followed
by HAR. The phospholipidosis curve for HAR was bi-
phasic, indicating a potential therapeutic window be-
tween 2.5 and 20 μg/ml. NIN induced minimal levels of
phospholipidosis while ABE and AMX did not induce
phospholipidosis. Overall, these findings reveal novel
candidates for anti-HCoV drug development.

Discussion
Genome-wide CRISPR knockout screens have been
very successful in identifying host factors required
for viral infection so it is not surprising that this ap-
proach has been applied to the discovery of proviral
factors for SARS-CoV-2 infection. Indeed, six recent
studies have reported CRISPR screens in cells in-
fected with SARS-CoV-2 [10–15]. As has been ob-
served generally for genome-wide screens, there was
limited overlap in the set of genes reported as host
factors. In our reanalysis of the data using a com-
mon framework, there were only 17 genes identified
in two or more published screens performed in hu-
man cells (ACE2, ATP6V1A, ATP6V1G1, B3GAT3,
CCZ1B, CNOT4, CTSL, DNM2, EXOC2, EXT1,
EXTL3, MBTPS2, PIK3C3, SCAP, TMEM106B,
VAC14, and VPS35). This finding is not unexpected
considering that the screens were performed in a
variety of cell lines and under varying infection con-
ditions. There was more overlap in the functional
categories identified across studies, with enrichment
of genes involved in glycosaminoglycan biosynthesis,
vesicle transport, and ER/Golgi-localized proteins
[39]. Due to the limited redundancy of specific host
factors identified across published studies and the
potential of proviral gene products to be targeted
with antiviral drugs, additional genome-wide screens
are warranted. To that end, we performed CRISPR
screens in AGM Vero E6 cells and human
HEK293T-hACE2 cells. We performed screens for
both SARS-CoV-2 and the common cold-causing
HCoV OC43 to increase the probability of identify-
ing pan-HCoV proviral factors representing strong
targets for developing broad-spectrum antivirals. Our
study provides additional support for previously
identified candidate host factors and reports multiple
novel host factors and pathways playing potentially

key roles in viral replication. We summarize the
consolidated set of candidate host factors identified
for SARS-CoV-2 in our study as well as those identi-
fied in two or more studies in Fig. 9.
Host factors promoting SARS-CoV-2 infection of

Vero E6 cells (FDR < 0.25) are indicated in Fig. 9
adjacent to the presumptive step in the viral life
cycle in which they function. In this cell line, cell
cycle regulation was key to SARS-CoV-2 replication.
CDK4 was a top-scoring gene for both SARS-CoV-2
and OC43, suggesting it is broadly required for
HCoV replication. CoVs utilize diverse strategies to
manipulate the host cell cycle to promote their repli-
cation [45]. Identification of specific cell cycle-
related host factors required for HCoV replication
could provide clues to dissecting viral regulatory
mechanisms. We also identified IFITM proteins in
both SARS-CoV-2 and OC43 screens in Vero E6
cells, consistent with a prior study reporting that
IFITM proteins promote OC43 infection [35]. Inter-
estingly, recent work suggests that IFITM proteins
promote HCoV entry when it occurs at the plasma
membrane but inhibit HCoV entry when it occurs in
the endocytic pathway [36, 37], suggesting that
HCoVs enter Vero E6 cells primarily at the plasma
membrane instead of using the endosomal pathway.
This finding is consistent with the paucity of factors
involved in endocytosis identified in these screens, in
stark contrast to our and others’ results in screens
performed in human cell lines.
In addition to CDK4 and IFITM proteins, targeting of

SLC35B2 in both SARS-CoV-2 and OC43 Vero E6
screens increased resistance to infection, suggesting that
it is a pan-HCoV host factor in this cell line. SLC35B2
encodes 3′-phosphoadenosine 5′-phosphosulfate trans-
porter 1 (PAPST1) which plays an important role in
heparan sulfate biosynthesis. PAPST1 is required for op-
timal replication of a variety of viruses including HIV,
dengue virus, and bunyaviruses, enabling heparan
sulfate-mediated viral entry or sulfating a viral receptor
that enables virion binding [46–48]. It is hence logical to
predict that it functions in HCoV entry in Vero E6 cells
as well. Additional candidate pan-HCoV factors identi-
fied in the Vero E6 studies include PLN encoding phos-
pholamban and C16orf74 which are both implicated in
maintaining calcium homeostasis [49–51], and C3orf80
encoding a protein of unknown function. None of these
gene products has been previously identified as viral host
factors to our knowledge, and their functional roles will
require further study.
Host factors promoting SARS-CoV-2 infection of

HEK293T-hACE2 cells (FDR < 0.25) are indicated in
Fig. 9 adjacent to the presumptive step in the viral life
cycle in which they function. The functional categories
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Fig. 9 Summary of genes found in this and other studies and their potential roles in the SARS-CoV-2 life cycle. The host factors identified in
CRISPR screens are presented adjacent to the putative stage of viral replication where they function. The genes are color-coded based on their
identification in our and other published studies, as indicated in the legend. Candidate pan-HCoV host factors are indicated with red asterisks.
The virus replicates through a series of well-defined molecular steps. 1–2 After virion binding to ACE2, SARS-CoV-2 can fuse at the plasma
membrane or following endocytosis. Heparan sulfate proteoglycans enhance viral attachment to cells so host factors involved in heparan sulfate
biosynthesis (B3GAT3, EXT1, EXTL3, SLC35B2) and glycosylation (A4GALT, ALG5, ALG9) may play a role in viral entry. The IFITM proteins are
proposed to promote fusion at the cell surface but inhibit fusion in endosomes. Host factors involved in endocytosis (C18orf8, CCZ1, CCZ1B,
CLTC, EPN1, WDR81, WDR91), vesicular transport (DNM2, PIK3C3, RAB7A, TMEM106B, SNX27, VAC14, VPS35), and amphisome maturation/lysosome
fusion (ATP6VIE1, ATPCV1G1, ATP6V1A, CTSL, GDI2, TMEM41B) likely facilitate virion uncoating. 3 The positive-sense RNA genome is then
translated to produce the nonstructural polyproteins which are co-translationally cleaved to form the mature nsps. Certain host factors like RNH1
and DAZ3 may serve to protect the viral genome from degradation by host enzymes. 4 The nsps form the viral replicase which assembles on
organellar membranes to form the replication and transcription complexes (RTCs) where progeny genomes and structural/accessory protein
transcripts are produced, respectively. P-body components EDC4 and XRN1, identified in this study, may play a role in maintaining viral RNA
stability or assembly of the RTC. 5 Structural and accessory proteins are translated, and structural proteins insert into the ER membrane. ER-
localized SLC39A1 may play a role in this process. 6 Nucleocapsids bud into the ERGIC, potentially aided by host factors ERGIC3, SEC63, SLC33A1,
and SCAP. 7 Progeny virions form as they traverse through the Golgi and structural proteins are glycosylated. 8 Virions exit the cell through either
typical exocytosis (DNM2, EXOC2, EXT1, EXTL3, MYH13, SNX27, VPS35) or nonclassical lysosomal egress (GNPTAB, GNPTG, NAGPA, NPC1,
TMEM106B, PIP4P1). Numerous host factors with less obvious direct roles in promoting steps in the viral life cycle have also been identified in
CRISPR screens. For example, numerous factors regulating the cell cycle (BAX, CDK4, CDKN1A, DYRK1A, HRK, MPLKIP, PTCH1, STRADA, TP53) were
identified in our screens in AGM and human cells. Furthermore, multiple nuclear-localized host factors including diverse transcriptional regulators
and two components of the integrator complex (INTS6, INTS12) were identified. Overall, the large number of diverse host factors that promote
SARS-CoV-2 replication illustrates the large-scale exploitation of cellular processes required for successful viral propagation. Adapted from
BioRender template titled Life Cycle of Coronavirus generated by the Britt Glaunsinger laboratory. Created with BioRender.com
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with the most top-scoring genes were vesicle transport,
cell cycle regulation, autophagy, and ubiquitination/pro-
teolysis. For the OC43 screens, the most abundant func-
tional categories were vesicle transport, transcriptional
regulation including the SWI/SNF complex, innate im-
munity, and transporters. The host factors identified in
the HEK293T-hACE2 screens for both SARS-CoV-2 and
OC43 (C18orf8, CCZ1, CCZ1B, RAB7A, WDR81, and
WDR91) are all involved in vesicle-mediated transport
and particularly in endosomal maturation, underscoring
the importance of this process for HCoV infection.
When comparing our SARS-CoV-2 data sets in

HEK293T-hACE2 cells to published data sets in other
human cell lines, there were 21 genes in common with
other studies (FDR < 0.25; ACE2, ALG5, ARVCF,
CCZ1B, CTSL, DNM2, EPT1, GDI2, LUC7L2, RAB7A,
RNH1, SCAF4, SLC30A1, SLC33A1, SNX27, TMEM41B,
TMEM251, VAC14, VPS35, WDR81, and WDR91) which
highlight key functional pathways required for viral in-
fection, including endocytosis, glycosylation, and exocyt-
osis. Remarkably though, we identified 53 unique genes,
underscoring the importance of continued screening to
fully elucidate host factors promoting SARS-CoV-2 rep-
lication. Certain unique genes function in previously
identified pathways such as vesicle transport (e.g., CCZ1,
C18orf8) and ER/Golgi-localized proteins (e.g., SEC63,
ERGIC3). Other unique genes function in processes that
have not been previously described as proviral in HCoV
infections. For example, EDC4 was a top-scoring gene in
our SARS-CoV-2 screens in HEK293T-hACE2 cells.
EDC4 functions as a scaffold protein for the assembly of
the programmed mRNA decay complex. Although it has
not been reported to play a role in HCoV infection be-
fore, it does promote rotavirus replication complex as-
sembly [52]. Another component of the programmed
mRNA decay pathway XRN1 was also modestly
enriched, suggesting that this pathway promotes SARS-
CoV-2 replication. Alternatively, EDC4 and XRN1 are
both P-body components. Many RNA viruses interact
with and hijack P-bodies in order to promote viral repli-
cation [53] and SARS-CoV-2 has recently been reported
to disrupt P-bodies [54] so it is possible that the virus in-
teracts with these host factors to disassemble P-bodies
and facilitate viral replication. We also identified three
unique genes encoding factors involved in targeting pro-
teins to lysosomes—GNPTAB, GNPTG, and NAGPA.
Considering recent progress in understanding the key
role played by lysosomes in HCoV egress [7], it is inter-
esting to speculate that HCoVs interact with these pro-
teins to facilitate virion release from the infected cell.
Two approaches were taken to validate the proviral

role of a subset of unique host factors identified in
our screens. First, shRNA-mediated knockdown of
CCZ1, EDC4, and XRN1 resulted in reduced SARS-

CoV-2 and OC43 replication. Second, drugs targeting
selected host factors displayed antiviral efficacy
in vitro against SARS-CoV-2. These include cell cycle
inhibitors ABE targeting Cdk4, AZ1 targeting Usp25/
28, HAR targeting Dyrk1A, NIN targeting Fgfr1/2/3,
and UC2 targeting p21; the endocytosis inhibitor
PMZ targeting Wdr81; and the Tbk1 inhibitor AMX.
Chen et al. recently reported similar activity of ABE
against SARS-CoV-2 [55], validating our findings. To
our knowledge, the discovery that AMX, AZ1, HAR,
NIN, PMZ, and UC2 possess antiviral activity against
SARS-CoV-2 has not been reported. AMX, PMZ, and
NIN are currently available drugs which could poten-
tially be repurposed, while HAR is a natural product
being investigated for the treatment of a variety of
diseases. While no clinical therapeutics are currently
available targeting p21 or Usp25/28, our data suggest
that these could be worthwhile targets for drug devel-
opment. Further study of the potential in vivo utility
of these compounds in treating HCoV infections and
their mechanism of action is warranted.

Conclusions
Our studies substantiate and expand the growing body
of literature focused on understanding key HCoV-host
cell interactions. The fairly limited redundancy in pro-
viral factors identified across our study and other pub-
lished studies using genome-wide CRISPR screens [10–
15] highlights the extensive scope of these interactions
and suggests that even more host factors remain to be
discovered. Cell type differences and variable infection
conditions undoubtedly influence the outcomes of
screens and could provide novel insight into nuanced
viral replication mechanisms. For example, we identified
lysosomal proteins as proviral in HEK293T-hACE2 cells
but not in Vero E6 cells, raising the possibility that there
are cell type-specific differences in the use of lysosomes
for HCoV egress [7]. Detailed molecular studies testing
hypotheses like this stemming from genome-scale
CRISPR screens are a critical next step. Similarly, al-
though we have identified novel compounds displaying
antiviral activity against HCoVs in vitro, additional work
is needed to determine their mechanism of action at the
molecular level and in vivo efficacy before they can be
applied in the clinic.
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